A Dynamic Density Peak Clustering Algorithm Based on K-Nearest Neighbor
نویسندگان
چکیده
The clustering results of the density peak algorithm (DPC) are greatly affected by parameter d c , and center needs to be selected manually. To solve these problems, this paper proposes a low sensitivity dynamic based on K-Nearest Neighbor (DDPC), label is allocated adaptively analyzing distribution Neighbors around each data. It reduces eliminates selecting centers manually from decision graph. Through experimental analysis comparison artificial dataset UCI dataset, show that comprehensive effect DDPC better than DPC, DBSCAN, DBC, other algorithms.
منابع مشابه
Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملWeighted K-Nearest Neighbor Classification Algorithm Based on Genetic Algorithm
K-Nearest Neighbor (KNN) is one of the most popular algorithms for data classification. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different datasets. The traditional KNN text classification algorithm has limitations: calculation complexity, the performance is solely dependent on the training set, and so on. To overcome these li...
متن کاملBatch Incremental Shared Nearest Neighbor Density Based Clustering Algorithm for Dynamic Datasets
Incremental data mining algorithms process frequent updates to dynamic datasets efficiently by avoiding redundant computation. Existing incremental extension to shared nearest neighbor density based clustering (SNND) algorithm cannot handle deletions to dataset and handles insertions only one point at a time. We present an incremental algorithm to overcome both these bottlenecks by efficiently ...
متن کاملSpectral Clustering Based on k-Nearest Neighbor Graph
Finding clusters in data is a challenging task when the clusters differ widely in shapes, sizes, and densities. We present a novel spectral algorithm Speclus with a similarity measure based on modified mutual nearest neighbor graph. The resulting affinity matrix reflex the true structure of data. Its eigenvectors, that do not change their sign, are used for clustering data. The algorithm requir...
متن کاملDensity Based k-Nearest Neighbors Clustering Algorithm for Trajectory Data
With widespread availability of low cost GPS, cellular phones, satellite imagery, robotics, Web traffic monitoring devices, it is becoming possible to record and store data about the movement of people and objects at a large amount. While these data hide important knowledge for the enhancement of location and mobility oriented infrastructures and services, by themselves, they demand the necessa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Security and Communication Networks
سال: 2022
ISSN: ['1939-0122', '1939-0114']
DOI: https://doi.org/10.1155/2022/7378801